Graphical Methods for Tannaka Duality of Weak Bialgebras and Weak Hopf Algebras

نویسنده

  • MICAH BLAKE MCCURDY
چکیده

Tannaka duality describes the relationship between algebraic objects in a given category and functors into that category; an important case is that of Hopf algebras and their categories of representations; these have strong monoidal forgetful “fibre functors” to the category of vector spaces. We simultaneously generalize the theory of Tannaka duality in two ways: first, we replace Hopf algebras with weak Hopf algebras and strong monoidal functors with separable Frobenius monoidal functors; second, we replace the category of vector spaces with an arbitrary braided monoidal category. To accomplish this goal, we make use of a graphical notation for functors between monoidal categories, using string diagrams with coloured regions. Not only does this notation extend our capacity to give simple proofs of complicated calculations, it makes plain some of the connections between Frobenius monoidal or separable Frobenius monoidal functors and the topology of the axioms defining certain algebraic structures. Finally, having generalized Tannaka duality to an arbitrary base category, we briefly discuss the functoriality of the construction as this base is varied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tannaka Duality, Coclosed Categories and Reconstruction for Nonarchimedean Bialgebras

The topic of this paper is a generalization of Tannaka duality to coclosed categories. As an application we prove reconstruction theorems for coalgebras (bialgebras, Hopf algebras) in categories of topological vector spaces over a nonarchimedean field K. In particular, our results imply reconstruction and recognition theorems for categories of locally analytic representations of compact p-adic ...

متن کامل

Tannaka Reconstruction of Weak Hopf Algebras in Arbitrary Monoidal Categories

We introduce a variant on the graphical calculus of Cockett and Seely[2] for monoidal functors and illustrate it with a discussion of Tannaka reconstruction, some of which is known and some of which is new. The new portion is: given a separable Frobenius functor F : A −→ B from a monoidal category A to a suitably complete or cocomplete braided autonomous category B, the usual formula for Tannak...

متن کامل

ar X iv : m at h / 04 09 59 9 v 3 [ m at h . Q A ] 1 A pr 2 00 5 YETTER - DRINFELD MODULES OVER WEAK BIALGEBRAS

We discuss properties of Yetter-Drinfeld modules over weak bialgebras over commutative rings. The categories of left-left, left-right, right-left and right-right Yetter-Drinfeld modules over a weak Hopf algebra are isomorphic as braided monoidal categories. Yetter-Drinfeld modules can be viewed as weak Doi-Hopf modules, and, a fortiori, as weak entwined modules. If H is finitely generated and p...

متن کامل

Yetter-drinfeld Modules over Weak Bialgebras

We discuss properties of Yetter-Drinfeld modules over weak bialgebras over commutative rings. The categories of left-left, left-right, right-left and right-right Yetter-Drinfeld modules over a weak Hopf algebra are isomorphic as braided monoidal categories. Yetter-Drinfeld modules can be viewed as weak Doi-Hopf modules, and, a fortiori, as weak entwined modules. If H is finitely generated and p...

متن کامل

Tannaka–Krěın reconstruction and a characterization of modular tensor categories

We show that every modular category is equivalent as an additive ribbon category to the category of finite-dimensional comodules of a Weak Hopf Algebra. This Weak Hopf Algebra is finite-dimensional, split cosemisimple, weakly cofactorizable, coribbon and has trivially intersecting base algebras. In order to arrive at this characterization of modular categories, we develop a generalization of Ta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012